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Abstract 

This study analyzes the performance of a comprehensive set of equity premium forecasting strategies 

that have been shown to outperform the historical average forecast out-of-sample and to improve upon 

conventional predictive regressions when tested in isolation. Controlling for potential data snooping 

biases using Hansen’s (2005) SPA-test and its stepwise extension, we find that only the sum-of-the-

parts model proposed by Ferreira and Santa-Clara (2011) outperforms the historical average forecast 

in terms of mean squared forecast errors. However, several advanced forecasting strategies are able to 

produce statistically significant economic gains when used in a traditional mean-variance asset alloca-

tion, even after controlling for data snooping biases. In contrast, the benefits for an investor aiming at 

timing the market are limited. 
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1. Introduction 

While in-sample predictability of the equity premium is largely undisputed (Campbell, 2000), 

out-of-sample predictability is still a controversy. Although the merits of out-of-sample validation is 

disputable (Inoue and Kilian, 2004), most investors are ultimately interested whether the prediction of 

the equity premium pays off. This is also the point of view we take in this study, which jointly exam-

ines the out-of-sample performance of simple predictive regressions and advanced forecasting strate-

gies in order to assess whether any of these strategies is truly superior to the historical average forecast 

out-of-sample. 

Traditionally, academic studies focused on the predictive ability of fundamental variables such 

as the dividend-price ratio (Campbell and Shiller, 1989), book-to-market ratio (Kothari and Shanken, 

1997), or interest rates (Fama and Schwert, 1977) in a simple predictive regression framework. While 

the existing evidence is predominantly in-sample
1
, recently an increasing number of studies have test-

ed the out-of-sample predictability of the equity premium. One of the most influential studies is the 

one by Goyal and Welch (2008). They examine both the in-sample and out-of-sample performance of 

many popular fundamental variables and conclude that, based on the out-of-sample validations, most 

conventional predictive regressions seem unstable and do not benefit investors in timing the market. 

Taking up the challenge posed by Goyal and Welch (2008) to “explore more variables and/or 

more sophisticated models,” several recent studies have proposed more advanced forecasting strate-

gies. For example, one way to improve upon conventional predictive regressions is to exploit the pre-

dictive ability of alternative predictors such as lagged industry returns (Hong, Torous and Valkanov, 

2007) or technical indicators (Neely et al., 2014). However, when considering alternative predictor 

variables, out-of-sample predictability might be especially challenging to uncover due to model uncer-

tainty (i.e., the uncertainty which forecasting strategy is effectively “the best”) and parameter instabil-

                                                 
1
 See Rapach and Zhou (2013) for a survey of the literature on stock return forecasting. 
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ity (i.e., changing parameters due to business cycle fluctuations) (Pesaran and Timmermann, 1995). 

Therefore, a new strand of literature on out-of-sample equity premium predictability aims to improve 

forecasting performance by directly addressing these two challenges. These more advanced forecast-

ing techniques include strategies based on diffusion indices (Ludvigson and Ng, 2007; Neely et al., 

2014), combination forecasts (Timmermann, 2006; Rapach, Strauss, and Zhou, 2010), forecast re-

strictions (Campbell and Thompson, 2008; Ferreira and Santa-Clara, 2011), or regime-shifts (Henkel, 

Martin, and Nardari, 2011; Dangl und Halling; 2012; Huang et al., 2016). All of these strategies have 

been shown to improve upon conventional predictive regressions and outperform the historical aver-

age forecast when tested in isolation. 

So far, a systematic comparison of these advanced forecasting strategies is yet pending. Our pa-

per is the first to jointly reexamine the out-of-sample performance of conventional predictive regres-

sions and advanced forecasting strategies in order to assess whether any of the forecasting strategies is 

truly superior to the historical average forecast out-of-sample. When comparing the performance of 

several forecasting strategies, data snooping concerns naturally arise. As noted by Sullivan, Timmer-

mann, and White (1999), most forecasting strategies are tested on a single data set, and their perceived 

outperformance may be purely from chance rather than due to any genuine merit. To control for data 

snooping biases when testing for a possible superiority of certain forecasting strategies, Hansen (2005) 

proposes a test for superior predictive ability (SPA) that allows for the necessary correction. In our 

empirical analysis, we use Hansen’s (2005) SPA-test as well as its stepwise extension by Hsu, Hsu, 

and Kuan (2010) to ensure that our results are robust against data snooping biases. 

We analyze the performance of a comprehensive set of equity premium forecasting strategies 

that have been shown to outperform the historical average forecast out-of-sample and to improve upon 

conventional predictive regressions when tested in isolation. When controlling for data snooping bias-

es, we find that only the sum-of-the-parts model proposed by Ferreira and Santa-Clara (2011) outper-
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forms the historical average forecast in terms of mean squared forecast errors. In line with the results 

of Leitch and Tanner (1991), several forecasting strategies are able to produce statistically significant 

economic gains when used in a traditional mean-variance asset allocation, even after controlling for 

data snooping biases. However, the benefits for an investor aiming at timing the market are limited. 

The remainder of our paper is structured as follows: Section 2 gives an overview of equity pre-

mium forecasting strategies and how of we implement the selected strategies in our empirical analysis. 

Section 3 briefly describes the data snooping testing approaches. Section 4 discusses our main empiri-

cal results, and section 5 presents various robustness checks. Section 6 concludes. 

2. Forecasting strategies 

As noted by Sullivan, Timmermann, and White (1999), data snooping tests are especially sensi-

tive to the universe of forecasting strategies to which they are applied. To account for a complete set 

of forecasting strategies from which to draw, we consider both conventional predictive regression 

models and a comprehensive collection of advanced forecasting strategies. In doing so, it is imperative 

to trade-off between including too many ‘irrelevant’ strategies, thereby decreasing the power of the 

test (Hansen, 2005), and including too few strategies, thereby overstating its statistical significance. 

Following Rapach and Zhou (2013), we survey forecasting strategies that have become popular in the 

literature. 

Conventional predictive regressions: A simple predictive regression model is given as follows: 

where 𝑟𝑡+1 is the equity premium from period t to t+1, 𝑥𝑡 a variable available at time t that is 

expected to predict the future equity premium, and 𝜀𝑡+1 a zero-mean disturbance term. We define the 

monthly (log) equity premium as the continuously compounded stock return of the S&P 500 (includ-

 𝑟𝑡+1 = 𝛼 + 𝛽𝑥𝑡 + 𝜀𝑡+1 (1) 
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ing dividends) minus the log return on a risk-free bill. Using the updated monthly data set provided by 

Goyal and Welch (2008),
2
 we construct a set of 14 fundamental variables representative of the litera-

ture. A detailed description of the variables is provided in Appendix [A]. 

The out-of-sample predictions of are generated by first estimating the regression model in equa-

tion (1) via OLS and then using the fitted model to construct the equity risk premium forecast �̂�𝑡+1. In 

our empirical analysis, we employ a rolling (instead of a recursive) scheme to estimate the OLS pa-

rameter estimates �̂� and �̂� in order to capture uncertain model dynamics (Giacomini and White, 2006) 

and to comply with the stationarity requirement of Hansen’s (2005) SPA-test.  

Alternative predictors: Hong, Torous, and Valkanov (2007) propagated the predictive ability of 

lagged industry returns to forecast the broader stock market due to gradual information diffusion 

across markets. We use monthly returns on 38 value-weighted industry portfolios taken from Kenneth 

French’s website, albeit we have to drop five industries due to missing observations.
3
 The lagged in-

dustry returns are then used as alternative predictors in equation (1). 

Neely et al. (2014) affirmed the predictive power of technical indicators. One of the most popu-

lar trend-following strategies that has been successfully applied to various markets is based on moving 

averages. A simple moving average indicator MAs-l generates a signal based on the cross-over of two 

moving averages with short length 𝑠 and long length 𝑙, respectively, and is defined as  

                                                 
2
 Data are available at Amit Goyal’s webpage, at http://www.hec.unil.ch/agoyal/. 

3
 As in Hong, Torous and Valkanov (2007), the five industries excluded from the analysis are GARBG (sanitary 

services), STEAM (steam supply), WATER (irrigation systems), GOVT (public administration), and OTHER. 

 𝑆𝑖,𝑡 = {
1 𝑖𝑓 𝑀𝐴𝑠,𝑡 ≥ 𝑀𝐴𝑙,𝑡

0 𝑖𝑓 𝑀𝐴𝑠,𝑡 < 𝑀𝐴𝑙,𝑡
 where  𝑀𝐴𝑗,𝑡 =

1

𝑗
∑ 𝑃𝑡−𝑖

𝑗−1
𝑖=0  for  𝑗 = 𝑠, 𝑙 (2) 
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Moskowitz, Ooi and Pedersen (2012) study 58 liquid securities and document a strong relation-

ship between a security’s next month excess return and its past return. We construct an indicator 

MOMm that captures this time-series momentum:  

In addition to historical prices, volume data play a significant role in technical analysis. For ex-

ample, Blume, Easley, and O’Hara (1994) demonstrate that volume data provide further information 

that cannot be deduced from the price statistic alone. In order to use the information contained in the 

volume data, we follow Granville (1963) and construct a technical indicator VOLs-l based on the ‘on-

balance’ volume: 

The on-balance volume 𝑂𝐵𝑉𝑡 combines both volume and price information: 

In our empirical tests, we construct the moving-average and volume-based indicators based on 

short lengths 𝑠 = 1, 2, 3 and 𝑙 = 9, 12 months, respectively. For the momentum indicator, we consider 

price information lagged by 𝑚 = 9, 12 months. For all technical indicators, we use the S&P 500 (ex-

cluding dividends) as the price index 𝑃𝑡 and monthly volume data 𝑉𝑂𝐿𝑘 from Yahoo Finance.
4
 To 

allow for a direct comparison, we follow Neely et al. (2014) and transform the technical indicators 𝑆𝑡 

to point forecasts of the equity premium by replacing 𝑥𝑡 in the predictive regression model in equation 

(1) by the respective indicator 𝑆𝑖,𝑡 in equations (2), (3), and (4). 

                                                 
4
 Volume data are available at http://de.finance.yahoo.com. 

 𝑆𝑖,𝑡 = {
1 𝑖𝑓 𝑃𝑡 ≥ 𝑃𝑡−𝑚

0 𝑖𝑓 𝑃𝑡 < 𝑃𝑡−𝑚
 (3) 

 𝑆𝑖,𝑡 = {
1   𝑖𝑓  𝑀𝐴𝑠,𝑡

𝑂𝐵𝑉 ≥ 𝑀𝐴𝑙,𝑡
𝑂𝐵𝑉

0   𝑖𝑓  𝑀𝐴𝑠,𝑡
𝑂𝐵𝑉 < 𝑀𝐴𝑙,𝑡

𝑂𝐵𝑉 where 𝑀𝐴𝑗,𝑡
𝑂𝐵𝑉 =

1

𝑗
∑ 𝑂𝐵𝑉𝑡−𝑖

𝑗−1
𝑖=0  for  𝑗 = 𝑠, 𝑙 (4) 

 𝑂𝐵𝑉𝑡 = ∑ 𝑉𝑂𝐿𝑘
𝑡
𝑘=1 𝐷𝑘 where 𝐷𝑘 = {

1   𝑖𝑓  𝑃𝑘 ≥ 𝑃𝑘−1

−1  𝑖𝑓  𝑃𝑘 < 𝑃𝑘−1
 (5) 
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Diffusion indices: To avoid over-parametrization, several studies adopt a diffusion indices ap-

proach that assumes a factor model structure for the variables 𝑥𝑖,𝑡 and use estimates of the common 

factors as predictors in a simple predictive regression model. For example, Ludvigson and Ng (2007) 

extract three common factors, denoted as ‘volatility’, ‘risk premium’ and ‘real’ factors, from a com-

prehensive set of macroeconomic and financial variables and find that the subsequent diffusion indices 

forecasts exhibit significant out-of-sample predictive power. We follow Stock and Watson (2006) and 

estimate the common factors using principal component analysis based on either the full set of funda-

mental variables (PC-FUND), based on technical indicators (PC-TECH) or fundamental variables and 

technical indicators combined (PC-ALL). As noted by Rapach and Zhou (2013), for forecasting pur-

poses it is prudent to keep the number of common factors small to avoid over-parametrization. There-

fore, we consider only the first principal component. The extracted principal components then serve as 

independent variables in the predictive regression model in equation (1). 

Forecast restrictions: Campbell and Thompson (2008) argue that the performance of conven-

tional predictive regressions can be substantially improved by imposing weak restrictions on the signs 

of coefficients and return forecasts. In our empirical analysis, we restrict the equity premium forecasts 

obtained from the conventional predictive regressions to be non-negative. 

Combination forecasts: Timmermann (2006) argues that combining individual forecasts proves 

fruitful as it provides diversification gains compared to relying on forecasts from a single forecasting 

strategy, captures different degrees of adaptability of forecasting strategies to structural breaks and 

guards against model misspecification. Rapach, Strauss, and Zhou (2010) show that combinations of 

individual forecasts deliver statistically and economically significant out-of-sample results due to re-

duced model uncertainty and parameter instability. The combination forecasts are weighted averages 

of 𝑁 individual forecasts that are estimated using the predictive regression model in equation (1): 



 

8 

In our empirical analysis, we combine the individual forecasts based on the full set of funda-

mental variables (𝑁 = 14) and use three simple averaging methods: the mean combination forecast 

sets 𝜔𝑖,𝑡 =
1

𝑁
; the median combination forecast is the median of {�̂�𝑖,𝑡+1}

𝑖=1

𝑁
; and the trimmed mean 

combination forecast sets 𝜔𝑖,𝑡 = 0 for the individual forecasts with the smallest and largest value and 

𝜔𝑖,𝑡 =
1

𝑁−2
 for the remaining individual forecasts. 

Regime shifts: As noted by Paye and Timmermann (2006) and Rapach and Wohar (2006b), the 

data-generating process for stock returns is subject to substantial parameter instability due to structural 

breaks. To account for parameter instability, several forecasting strategies have been suggested. Build-

ing on work by Hamilton (1989), Guidolin and Timmermann (2007) estimate a multivariate Markov-

switching model with four regimes characterized as ‘crash’, ‘slow growth’, ‘bull’, and ‘recovery’ and 

document that their model produces significant utility gains in asset allocation decisions. Exploiting 

the time-variation of several fundamental variables, Henkel, Martin and Nardari (2011) use a regime-

switching vector auto-regression framework with two states that closely resemble the NBER-dated 

business cycles. They find that the historical average forecast is the best out-of-sample predictor in 

expansions, while fundamental variables provide useful information in recessionary periods. 

Most recently, Huang et al. (2016) use a state-dependent predictive regression model that was 

introduced by Boyd, Hu, and Jagannathan (2005) and addresses the critique by Lettau and Van Nieu-

werburgh (2008) that regime-shifting models perform poorly out-of-sample due to unreliable esti-

mates of the timing and the size of regime shifts. Their results indicate that conventional predictive 

regressions are often misspecified and that their state-dependent approach is able to predict the equity 

premium in both bad and good times. Switching between a finite number of states, Dangl and Halling 

 �̂�𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛,𝑡+1 = ∑ 𝜔𝑖,𝑡

𝑁

𝑖=1

�̂�𝑖,𝑡+1 (6) 
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(2012) test a time-varying model that allows for parameters to evolve as random walks from period to 

period. Their model is able to significantly outperform the historical average forecast out-of-sample. 

In our analysis, we apply the state-dependent predictive regression approach of Huang et al. 

(2016) to the full set of fundamental variables. Following Cooper, Gutierrez, and Hameed (2004), the 

market states are identified based on past return information: 

To proxy for the market state, we follow Huang et al. (2016) and construct the indicator 𝐼𝑡 to 

take the value of one when the past six-month (log) equity premium is non-negative, and zero other-

wise. As noted by these authors, this indicator-based identification of states coincides with the results 

obtained by Henkel, Martin, and Nardari (2001) using Bayesian estimation. 

Sum-of-the-parts models: The sum-of-the-parts (SOP) method proposed by Ferreira and Santa-

Clara (2011) provides a stock market return forecast by separately forecasting the three components of 

the stock market return, namely the dividend-price ratio (𝑑𝑝𝑡+1), the growth rate of earnings (𝑔𝑒𝑡+1), 

and the growth rate of the price-earnings ratio (𝑔𝑚𝑡+1): 

Using this return decomposition, we follow the simplest version of the SOP method by assum-

ing no multiple growth, estimating the growth rate of earnings as a 20-year moving average of growth 

in earnings per share, and modelling the dividend-price ratio as a random walk: 

Expanding the work of Ferreira and Santa-Clara (2011), Bätje and Menkhoff (2016) develop an 

‘extended’ sum-of-the-parts (ESOP) approach that combines the decomposition of the stock market 

return forecast with fundamental and technical indicators as well as combination forecasts. In a first 

 𝑟𝑡+1 = 𝛼 + 𝛽𝑔𝑜𝑜𝑑𝑥𝑡𝐼𝑔𝑜𝑜𝑑,𝑡 + 𝛽𝑏𝑎𝑑𝑥𝑡(1 − 𝐼𝑔𝑜𝑜𝑑,𝑡) + 𝜀𝑡+1 (7) 

 𝑟𝑡+1 = 𝑔𝑚𝑡+1 + 𝑔𝑒𝑡+1 + 𝑑𝑝𝑡+1 − 𝑟𝑓,𝑡+1 (8) 

 �̂�𝑡+1
𝑆𝑂𝑃 = 𝑔𝑒̅̅̅̅ 𝑡 + 𝑑𝑝𝑡 − 𝑟𝑓,𝑡 (9) 
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step, the growth rate of the price-earnings ratio, 𝑔�̂�𝑖,𝑡+1, and the growth rate of earnings, 𝑔�̂�𝑖,𝑡+1, are 

estimated by simple predictive regressions using solely fundamental variables or technical indicators, 

respectively. In a second step, the individual component forecasts are combined using simple averag-

ing methods (mean, median, and trimmed mean). Finally, the equity premium forecast is obtained by 

summing the (combined) component forecasts, assuming that the dividend-price ratio and the risk-free 

rate follow a random walk: 

3. Testing methods 

When considering a large number of possible forecasting strategies, data snooping is a natural 

concern (Lo and MacKinlay, 1990). In the context of the out-of-sample equity premium predictability, 

various testing procedures have been developed to avoid spurious statistical inference. For example, 

Rapach and Wohar (2006a) apply the McCracken (2007) MSE-F statistic that tests the null hypothesis 

that the mean squared forecast error (MSFE) of the historical average forecast is less than or equal to 

the minimum MSFE of all considered forecasting strategies against the one-sided (upper-tail) hypoth-

esis. Computing critical values for the maximum statistics using a bootstrap procedure, they conclude 

that out-of-sample equity premium predictability is reasonably robust to data snooping concerns. More 

recently, Neely et al. (2014) implement a modified version of White’s (2000) reality check based on a 

wild fixed-regressor bootstrap procedure developed by Clark and McCracken (2012) to show that their 

forecasting strategy based on diffusion indices has significant out-of-sample predictive power. 

However, most of the applied test statistics involve tests for equal predictive ability, i.e., testing 

whether the predictive ability of some forecasting strategy is the same as the one of the benchmark 

model. As our main research interest is to assess whether any of the considered forecasting strategies 

 �̂�𝑡+1
𝐸𝑆𝑂𝑃 = 𝑔�̂�𝑡+1

𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛,𝐹𝑈𝑁𝐷 + 𝑔�̂�𝑡+1
𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛,𝑇𝐸𝐶𝐻 + 𝑑𝑝𝑡 − 𝑟𝑓,𝑡 (10) 
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in our set is indeed ‘better’ than the benchmark model, we have to test for predictive superiority, i.e., 

testing whether the predictive ability of any forecasting strategy is greater than the one of the bench-

mark model. As noted by Hansen (2005), this subtle distinction leads to a composite hypothesis, such 

that the null distribution is not unique but in fact sample-dependent. 

Building on earlier work by White (2000), Hansen (2005) propose a test for superior predictive 

ability (SPA-test) that allows for a comprehensive comparison of forecasting strategies, while ensur-

ing that the results are robust to data snooping effects and that including poor or irrelevant strategies 

do not influence the power of the test. The predictive ability of each forecasting strategy is defined in 

terms of its expected loss 𝐸(𝐿𝑘). The most popular metric for evaluating the accuracy of point fore-

casts is the mean squared forecast error (MSFE) over the out-of-sample period. Therefore, in a first 

test we compare the performance of the forecasting strategies with the performance of a benchmark 

model based on the MSFE loss function 𝐿𝑘,𝑡 = (𝑟𝑡 − �̂�𝑘,𝑡)
2
, where 𝑟𝑡 is the realized (log) equity pre-

mium, and �̂�𝑘,𝑡 is the (log) equity premium forecast based on forecasting strategy k. 

However, as shown by Leitch and Tanner (1991), there is only a weak relationship between 

MSFE and forecast profitability, with forecasting strategies that outperform the benchmark model in 

terms of MSFE often failing to outperform when considering profit- or utility-based metrics. There-

fore, we consider both the (negative) absolute return, 𝐿𝑘,𝑡 = −𝑟𝑘,𝑡
∗  based on the equity premium fore-

cast of strategy k, and the risk-adjusted excess return 𝐿𝑘,𝑡 = −
𝑟𝑘,𝑡

∗ −𝑟𝑓,𝑡

𝜎𝑘
, where 𝜎𝑘 is the volatility of the 

excess return of strategy k, as adequate loss functions. 

The loss values are then transformed into relative performance variables, defined as 𝑑𝑘,𝑡 =

𝐿0,𝑡 − 𝐿𝑘,𝑡, where 𝐿0,𝑡 denotes the loss function of the benchmark model. The historical average of the 

equity premium serves as a natural benchmark model that indicates a constant expected equity premi-
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um (Goyal and Welch, 2008). In our empirical application, we calculate the historical average forecast 

as the average of the equity premium over the same rolling window used to estimate the conventional 

predictive regressions and advanced forecasting strategies. 

Next, when testing for superior predictive ability, we test the null hypothesis that the benchmark 

model is not inferior to any alternative forecasting strategy: 

If the null can be rejected, there is at least one forecasting strategy that outperforms the bench-

mark. As a test statistic, Hansen (2005) proposes the studentized test statistic: 

where �̅�𝑘 = 𝑛−1 ∑ 𝑑𝑘,𝑡
𝑛
𝑡=1  denotes the average relative performance of forecasting strategy k, 

and �̂�𝑘
2 is a consistent estimate of 𝜔𝑘

2 = 𝑣𝑎𝑟(𝑛1/2�̅�𝑘). To ensure that poor forecasting strategies do 

not asymptotically influence the test statistic, Hansen (2005) advocates invoking a null distribution 

based on 𝑁(�̂�, Ω̂), where �̂�𝑘 is an estimator for 𝜇𝑘 given as �̂�𝑘 = �̅�𝑘𝟙{𝑛1/2�̅�𝑘/�̂�𝑘≤−√𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛}. 

To approximate the distribution of the test statistic, we follow Hansen (2005) and use the sta-

tionary bootstrap of Politis and Romano (1994). For each strategy, we generate 𝑏 = 1, … , B resamples 

of 𝑑𝑘,𝑡 by drawing geometrically distributed blocks with a mean block length of 𝑞−1. We set the 

smoothing parameter 𝑞 = 0.5 and generate B = 10,000 bootstrap resamples. The bootstrapped varia-

bles 𝑑𝑘,𝑏,𝑡
∗  are re-centered about �̂�𝑘 as 𝑍𝑘,𝑏,𝑡

∗ = 𝑑𝑘,𝑏,𝑡
∗ − 𝑔(�̅�𝑘), and the studentized test statistic under 

the bootstrap is calculated as 𝑇𝑏,𝑛
𝑆𝑃𝐴∗

= 𝑚𝑎𝑥 (𝑚𝑎𝑥𝑘=1,…,𝑚
𝑛1/2𝑍𝑘,𝑏

∗

�̂�𝑘
, 0), where �̅�𝑘,𝑏

∗ = 𝑛−1 ∑ 𝑍𝑘,𝑏,𝑡
∗𝑛

𝑡=1 . A 

consistent estimate of the p-value is then given by: 

 𝐻0: 𝑚𝑎𝑥
𝑘=1,…,𝑚

𝐸(𝑑𝑘,𝑡) ≡ 𝜇𝑘 ≤ 0 (11) 

 𝑇𝑛
𝑆𝑃𝐴 = 𝑚𝑎𝑥 ( 𝑚𝑎𝑥

𝑘=1,…,𝑚

𝑛1/2�̅�𝑘

�̂�𝑘
, 0) (12) 
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where the null hypothesis is rejected for small p-values. As shown by Hansen (2005), an upper 

and a lower bound for the p-value can be obtained by re-centering about �̂�𝑘
𝑢 = 0, which assumes that 

all competing forecasting strategies are as good as the benchmark model, and �̂�𝑘
𝑙 = 𝑚𝑖𝑛 (�̅�𝑘 , 0), which 

assumes that forecasting strategies that are outperformed by the benchmark model are ‘poor models in 

the limit’, respectively. A large difference between the upper and lower bound p-values is indicative 

of many poor forecasting strategies. 

If the null hypothesis is rejected, we employ the stepwise extension of the SPA-test (step-SPA-

test) developed by Hsu, Hsu and Kuan (2010) in order to identify additional significant forecasting 

strategies. First, we re-arrange the forecasting strategies in descending order of their average relative 

performance �̅�𝑘 and reject the best model if the studentized test statistic is greater than the critical 

value bootstrapped from the entire set of forecasting strategies. Second, we remove �̅�𝑘 of the rejected 

model and compute a critical value bootstrapped from the subset of remaining forecasting strategies. 

We again reject the top model if the studentized test statistic is greater than the new critical value and 

repeat this procedure until no further forecasting strategy can be rejected. 

4. Empirical results 

Due to the availability of volume data, the sample period is from December 1950 to December 

2015. We estimate all forecasting strategies (including the historical average forecast) using a rolling 

window of 180 months, and, after considering the initial estimation period, analyze the out-of-sample 

performance from January 1966 to December 2015. Most recent studies analyze the out-of-sample 

forecasts in terms of the Campbell and Thompson (2008) out-of-sample R² (R²OOS) and the Clark and 

West (2007) MSFE-adjusted statistic (Ferreira and Santa-Clara, 2011; Neely et al., 2014). The R²OOS 

 �̂�𝑆𝑃𝐴 = ∑

𝟙
{𝑇𝑏,𝑛

𝑆𝑃𝐴∗
>𝑇𝑛

𝑆𝑃𝐴}

𝐵

𝐵

𝑏=1

 (13) 
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measures the proportional reduction in MSFE relative to the historical average forecast. A positive 

value indicates that the respective forecast strategy outperforms the historical average in terms of 

MSFE, and vice versa. The MSFE-adjusted statistics is comparable to the McCracken (2007) MSE-F 

statistics in so far as it tests the null hypothesis that the MSFE of the historical average forecast is less 

than or equal to the MSFE of the respective forecasting strategy against the (one-sided) upper-tail 

hypothesis. The MSFE-adjusted statistics can be interpreted as usual t-statistics where the significance 

level is assessed according to standard normal critical values.  

Table I summarizes the out-of-sample results of the conventional predictive regressions and ad-

vanced forecasting strategies. For the sake of brevity, we only present results for those forecasting 

strategies that exhibit either a positive R²OOS or a significant MSFE-adjusted statistic, thus indicating 

an outperformance of the historical average forecast in terms of MSFE. 

[Insert Table I here] 

As reported in panel A of Table I, only the conventional predictive regression models based on 

the long-term return (LTR) and the term spread (TMS) exhibit a positive R²OOS. Interestingly, the 

MSFE-adjusted statistics indicate that, despite the negative R²OOS statistics, the MSFEs of the conven-

tional predictive regressions based on the net equity expansion (NTIS), the Treasury-bill rate (TBL) 

and the default yield (DFY) are also significantly less than that of the historical average forecast.
5
 

Overall, the fundamental variables show only limited out-of-sample predictive ability, confirming the 

earlier results of Goyal and Welch (2008). 

                                                 
5
 Although these results seem surprising at first, they are plausible when comparing nested models, as in our 

empirical analysis. As shown by Clark and West (2007), the conventional predictive regression framework is 

expected to produce noisier estimates of the equity premium than the historical average forecast. Therefore, the 

difference between the MSFE of a conventional predictive regression forecast and the MSFE of the historical 

average forecast is upward biased. The MSFE-adjusted statistic accounts for this bias under the null hypothe-

sis, such that the MSFE-adjusted statistic is able to reject the null even if the R
2

OOS is negative. 
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Turning next to the advanced forecasting strategies in panel B of Table I, we find that, except 

for the return on the radio and television broadcasting industry portfolio (TV), none of the lagged in-

dustry returns exhibit a positive R²OOS or a significant MSFE-adjusted statistic. Moreover, contrasting 

the results of Neely et al. (2014), neither technical indicators nor diffusion indices are able to outper-

form the historical average forecast (and thus are not included).
6
 Combination forecasts, by contrast, 

exhibit significantly lower MSFEs than the historical average forecast, as indicated by their positive 

R²OOS and significant MSFE-adjusted statistics. With each R²OOS exceeding 0.60%, these forecasting 

strategies seem to outperform the conventional predictive regressions in terms of MSFE. In line with 

the findings of Campbell and Thompson (2008), forecast restrictions improve upon the conventional 

predictive regressions by either strengthening the predictive ability of those fundamental variables that 

already significantly outperform the historical average forecast in panel A, or uncovering the previ-

ously unrecognized predictive ability of conventional predictive regressions based on the equity pre-

mium volatility (RVOL) or the long-term government bond yield (LTY). 

In contrast, state-dependent regressions seem to worsen the performance of conventional pre-

dictive regressions. For example, the R²OOS of the predictive regression based on TMS decreases from 

0.24% to -0.56% when considering market states. Finally, all sum-of-the-parts models outperform the 

historical average forecast at the 1% level of statistical significance. Taken together, our results sug-

gest that combination forecasts, forecast restrictions, and the sum-of-the-parts models outperform both 

the historical average forecast and conventional predictive regressions in terms of MSFE, as indicated 

by their positive R²OOS and/or significant MSFE-adjusted statistics. 

                                                 
6
 We emphasize that, due to the rolling estimation scheme and a longer sample period, our results are not direct-

ly comparable to the results presented in Neely et al. (2014), who use an expanding windows scheme and data 

only up to 2011. When we apply their recursive estimation scheme, both technical indicators and diffusion in-

dices significantly outperform the historical average forecast. However, as noted earlier, a recursive estimation 

scheme would violate the stationarity assumption of the SPA test (see the discussion in Hansen, 2005).  
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While the results in Table I provide a first indication as to which advanced forecasting strate-

gies might offer an improvement upon conventional predictive regression models, these analyses nei-

ther account for data snooping biases (Lo and MacKinlay, 1990), nor are they able to establish wheth-

er there are any forecasting strategies that in fact exhibit predictive superiority (as opposed to equal 

predictive ability). Therefore, we apply Hansen’s (2005) SPA-test, comparing both the conventional 

predictive regressions and the advanced forecasting strategies with the performance of the historical 

average forecast. Since most advanced forecasting strategies claim to improve upon conventional pre-

dictive regressions, we first test each subset of advanced strategies separately, each time including the 

conventional predictive regressions in the test sample. As emphasized by Hansen (2005), testing dif-

ferent subsets of forecasting strategies is subject to data mining because the results do not incorporate 

the full set of strategies. Therefore, we further test the performance of conventional predictive regres-

sions and all advanced forecasting strategies jointly against the historical benchmark forecast. 

4.1. Forecast evaluation based on MSFE 

In our first test, we assess whether any forecasting strategy can more accurately forecast the eq-

uity premium than the historical average forecast in terms of MSFE using Hansen’s (2005) SPA-test. 

Table II shows the results. Column (1) describes the set of forecasting strategies we draw from. Col-

umn (3) gives the loss values of the benchmark model, the most significant model (the model with the 

highest t-statistic), and the best model (the model with the lowest loss value). The ‘nominal’ p-values 

in column (4) result from a pairwise comparison of the most significant and the best model with the 

benchmark. In contrast to the p-values of the SPA-test, these p-values do not account for the entire set 

of strategies. Column (5) gives the consistent p-value and the lower and upper bound p-values of the 

SPA-test. If the consistent p-value is sufficiently small, we can reject the null hypothesis of the SPA-

test, i.e., there is statistically significant evidence that at least one forecasting strategy is better than the 

historical average forecast in terms of MSFE. 
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[Insert Table II here] 

The first row in Table II summarizes the results of the SPA-test for the subset of conventional 

predictive regressions and lagged industry returns. Using the lagged return of the radio and television 

(TV) portfolio as an independent variable in a simple predictive regression model leads to the most 

significant and best results in terms of MSFE, thus outperforming the conventional predictive regres-

sions. However, the ‘nominal’ p-value of 0.3594 indicates no outperformance with respect to the his-

torical average forecast, even when considered in isolation. Consequently, the null hypothesis of the 

SPA-test cannot be rejected for this subset (as indicated by a consistent p-value of 0.9988). 

Turning to the subset including the technical indicators in the second row of Table II, we note 

that all technical indicators are dominated by a conventional predictive regression based on the term 

spread (TMS), which is selected as the most significant and best model in this subset. However, when 

we compare the most significant and best model with the historical average forecast, its performance 

in terms of MSFE is not statistically different from the MSFE of the historical average forecast, as 

indicated by ‘nominal’ p-value of 0.4268. Accordingly, the null hypothesis of the SPA-test also cannot 

be rejected for any of these subsets (with consistent p-value of 0.9963). Similar results apply for the 

subsets including the diffusion indices (third row) or the state-dependent predictive regressions (sixth 

row). In contrast, combinations forecasts (fourth row) can improve upon conventional predictive re-

gressions. Interestingly, the most significant and best models are not identical. While the median com-

bination forecast is the most significant model (with ‘nominal’ p-value of 0.0761), the mean combina-

tion forecast generates the lowest MSFE over the out-of-sample period (with minimal loss value of 

19.2403). However, the consistent p-value of 0.5468 reveals that the null hypothesis of the SPA-test 

cannot be rejected, i.e., none of the combination forecasts is able to significantly outperform the his-

torical average forecast when accounting for data snooping biases. 
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The results in the fifth row of Table II suggest that similar conclusions can be drawn for the 

subset including forecast restrictions. The restricted forecast based on the Treasury-bill rate (TBL) is 

selected as the most significant and best model, improving upon conventional predictive regressions. 

The ‘nominal’ p-value of 0.0969 indicates that this model is able to outperform the historical average 

forecast when considered in isolation. However, the consistent p-value of 0.7473 shows that the null 

hypothesis of the SPA-test can once again not be rejected. 

The results in the seventh row of Table II indicate that the SOP-approach offers improvement 

upon conventional predictive regressions. It significantly outperforms the historical average forecast 

when considered in isolation (‘nominal’ p-value of 0.0058) as well as when accounting for the entire 

subset of forecasting strategies (consistent p-value of 0.0556). The stepwise-SPA-test reveals that the 

SOP-approach is the only strategy that significantly outperforms the historical average forecast in this 

subset. 

Finally, when we turn to the results in the eighth row of Table II, the SOP-approach is also se-

lected as the most significant and best model when the full set of forecasting strategies is considered. 

However, we can no longer reject the null hypothesis of the SPA-test (consistent p-value of 0.1660), 

i.e., there is no statistically significant evidence that any forecasting strategy is better than the histori-

cal average forecast in terms of MSFE. However, we note that the spread between the upper and lower 

bound p-values is relatively large and points towards the inclusion of many poor forecasting strategies 

(Hansen, 2005). If we assume that the forecasting strategies with worse performance than the histori-

cal average forecast are indeed poor models in the limit, the null hypothesis of the SPA-test can again 

be rejected, as indicated by the lower bound p-value of 0.0085. 

Overall, the results in Table II indicate that many advanced forecasting strategies do not signifi-

cantly improve upon conventional predictive regressions and do not outperform the historical average 
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forecast once accounting for potential data snooping biases. Only Ferreira and Santa-Clara’s (2011) 

SOP-approach shows a clear superiority compared to both conventional predictive regressions and the 

historical average in terms of MSFE. 

4.2. Forecast evaluation based on profit-based measures 

As noted by Leitch and Tanner (1991), there is only a weak association between MSFE and 

forecast profitability. In order to assess whether out-of-sample predictability is sufficiently large to be 

of economic value, we compare the performance of both the conventional predictive regressions and 

advanced forecasting strategies with the historical average forecast (i) in terms of the absolute mean 

return and (ii) the risk-adjusted excess return using Hansen’s (2005) SPA-test. 

We compute the absolute return 𝑟𝑘,𝑡
∗  of an investor who monthly allocates her portfolio between 

the stock market and cash 𝑟𝑓,𝑡, based on the (simple) equity premium forecast of strategy k: 

where 𝑤𝑘,𝑡 is the proportion of total wealth allocated to the stock market. As investor can then 

use the point forecasts either as inputs for a traditional mean-variance asset allocation decision or for a 

market timing decision, we choose 𝑤𝑘,𝑡 accordingly: 

 Mean-variance asset allocation: A mean-variance investor sets the optimal weight on the stock 

market as: 

where 𝛾 is the coefficient of relative risk aversion, and �̂�𝑡
2 a forecast of the (simple) equity pre-

mium variance. We set 𝛾 = 5 and estimate �̂�𝑡
2 as a five-year rolling window of past monthly re-

turns following Neely et al. (2014). Moreover, we impose realistic portfolio constraints prevent-

 𝑟𝑘,𝑡
∗ = 𝑤𝑘,𝑡𝑟𝑡 + 𝑟𝑓,𝑡 (14) 

  𝑤𝑘,𝑡
𝑃 =

�̂�𝑘,𝑡

𝛾�̂�𝑡
2  (15) 
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ing investors from short selling and taking more than 50% leverage by limiting 𝑤𝑘,𝑡
𝑃  to lie be-

tween 0 and 1.5. 

 Market timing: A market timer is fully invested in the stock market if the equity premium fore-

cast is positive and reverts to holding cash otherwise: 

Since most forecasting strategies involve frequent trading, a realistic assessment of the perfor-

mance of any forecasting strategy relative to the benchmark model has to take transaction costs into 

account. In particular, we follow Balduzzi and Lynch (1999) and assume 50 basis points as turnover-

dependent costs. 

Table III displays the results for a loss function based on mean absolute returns (panel A) and 

risk-adjusted excess returns (panel B) when assuming a mean-variance investor. All in all, the results 

confirm that economic forecasting evaluation is important, as many forecasting strategies significantly 

outperform the historical average forecast in terms of both absolute and risk-adjusted measures when 

considered in isolation, as indicated by the sufficiently small ‘nominal’ p-values. 

[Insert Table III here] 

More specifically, the results of panel A in Table III indicate that lagged industry returns (first 

row), technical indicators (second row), diffusion indices (third row), and forecast restrictions (fifth 

row) do not improve upon the conventional predictive regression based on TMS, which in each subset 

is selected as the most significant and best model. The conventional predictive regression forecasts 

based on TMS generate a mean absolute return of -0.7824% per month that is significantly higher than 

the mean absolute return of the historical average forecast (with ‘nominal’ p-value of 0.0283). How-

  𝑤𝑘,𝑡
𝑀𝑇 = {

1 𝑖𝑓 �̂�𝑘,𝑡 > 0

0 𝑖𝑓 �̂�𝑘,𝑡 ≤ 0
  (16) 
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ever, the null hypothesis of the SPA-test cannot be rejected for each of these subsets (all consistent p-

values exceeding 10%). 

In contrast to the conventional predictive regression based on TMS, the mean combination fore-

cast (fourth row) significantly outperforms the historical average forecast when considered in isolation 

(with ‘nominal’ p-value of 0.0109). In addition, we can (albeit marginally) reject the null hypothesis 

of the SPA-test for the subset that includes combination forecasts (with consistent p-value of 0.1005), 

i.e., at least the mean combination forecast can significantly outperform the historical average forecast 

after accounting for data snooping biases. The results in the sixth row indicate that a state-dependent 

regression based on TMS is selected as the best model, delivering a higher mean absolute return of 

0.8108% per month, and significantly outperforming the historical average forecast when considered 

in isolation (with ‘nominal’ p-value of 0.0302). However, none of the state-dependent regressions is 

able to significantly outperform the historical average forecast when the entire set of strategies is con-

sidered (with consistent p-value of 0.3136). 

Turning to the subset including the sum-of-the-parts models (seventh row), we note that a sum-

of-the-parts model is selected as both the most significant and best model, thus outperforming conven-

tional predictive regressions. While the ESOP model based on median combination forecasts, ESOP 

(Median), is selected as the most significant model in a pairwise comparison against the historical 

average forecast (with ‘nominal’ p-value of 0.0011), the ESOP model using mean combination fore-

casts, ESOP (Mean), yields the highest mean absolute return of 0.9305% per month over the out-of-

sample period. In addition, we can reject the null hypothesis of the SPA-test at the 5% level of signifi-

cance (consistent p-value of 0.0124). Finally, the null hypothesis of the SPA-test can also be rejected 

for the full set of forecasting strategies (with a consistent p-value of 0.0346). The step-SPA-test fur-

ther confirms that all three ESOP models significantly outperform the historical average forecast. 
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Panel B of Table III summarizes the results of the SPA-test for a loss function based on the risk-

adjusted return measure. For the subsets including lagged industry returns (first row), technical indica-

tors (second row), diffusion indices (third row), forecast restrictions (fifth row), and state-dependent 

regressions (sixth row), the conventional predictive regression based on TBL turns out to be the most 

significant and best model, yielding a risk-adjusted excess return of 0.1071% per month (with a ‘nom-

inal’ p-value of 0.0234). Therefore, this simple model significantly (albeit at the margin) outperforms 

the historical average forecast when considered in isolation. As indicated by large consistent p-values, 

all exceeding 10%, however, it is not able to outperform the historical average forecast when account-

ing for data snooping biases in any of these subsets. For the subset including combination forecasts 

(fourth row), the most significant model in a pairwise comparison against the historical average fore-

cast is a mean combination forecast (with a ‘nominal’ p-value of 0.0019). We can even reject the null 

hypothesis of the SPA-test for this subset (with a consistent p-value of 0.0195). 

The null hypothesis of the SPA-test can also be rejected for the subset including the sum-of-the-

parts models (seventh row; with a consistent p-value of 0.0099). The ESOP (Median) model is select-

ed as the most significant and best model, yielding a highly significant risk-adjusted excess return of 

0.1617% per month (‘nominal’ p-value of 0.0008). Finally, the null hypothesis of the SPA-test can 

even be rejected when accounting for all forecasting strategies under investigation (eighth row; with 

consistent p-value of 0.0265). The step-SPA-test further confirms that all three ESOP models and the 

mean as well as the median combination forecasts significantly outperform the historical average fore-

cast after accounting for data snooping biases. 

Next, we assume a market timing investor. Table IV again shows the results for a loss function 

based on mean absolute returns (panel A) or risk-adjusted excess return (panel B). It becomes appar-

ent that the historical average forecast serves as a more stringent benchmark model both in terms of 

absolute and risk-adjusted excess returns in a market timing context as opposed to a traditional mean-
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variance asset allocation setting. Given the highly positive average equity premium during the sample 

period, the historical average forecast is almost identical to a buy-and-hold strategy and invested in 

cash for only seven months during the out-of-sample period following the early 1980s recession (April 

to October 1982). Accordingly, it yields a mean absolute return of 0.8459% and a risk-adjusted excess 

return of 0.1001% per month over our out-of-sample period. 

[Insert Table IV here] 

Panel A of Table IV reveals that, except for the sum-of-the-parts models, none of the advanced 

forecasting strategies is able to improve upon the conventional predictive regression based on TMS if 

the mean absolute return measure is used. This conventional prediction model delivers a higher mean 

absolute return than the historical average forecast (0.8884% vs. 0.8459% per month); however, the 

difference is not statistically significant even when considered in isolation (with ‘nominal’ p-value of 

0.3024). As a result, we cannot reject the null hypothesis of the SPA-tests for each subset in the first to 

sixth row. 

Only the sum-of-the-parts models are able to improve upon conventional predictive regressions 

and outperform the historical average forecast when considered in isolation with a mean absolute re-

turn of 0.9909% per month (with ‘nominal’ p-value of 0.0873) for the ESOP (Mean) model. Neverthe-

less, with a consistent p-value of 0.4607, we cannot reject the null hypothesis of the SPA-test for the 

subset including the sum-of-the-parts models. Accordingly, the null hypothesis of the SPA-test can 

also not be rejected for the entire set of forecasting strategies (with consistent p-value of 0.6539). 

When evaluating the risk-adjusted performance measure in panel B of Table IV, in most subsets 

the conventional predictive regressions based on TMS or the dividend-payout ratio (DE) are selected 

as the most significant and best model, respectively. But when considered in isolation, these conven-
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tional models do not significantly outperform the historical average forecast (with ‘nominal’ p-values 

of 0.1266 and 0.1797, respectively). 

Again, the sum-of-the-parts models (seventh row) provide the only improvement upon the most 

significant and best conventional predictive regressions. In particular, the ESOP (Mean) model exhib-

its the most significant performance in a pairwise comparison against the historical average forecast 

(with ‘nominal’ p-value of 0.0165), while the ESOP (Median) model yields the highest risk-adjusted 

excess return of 0.1565% per month over the out-of-sample period. Nevertheless, the outperformance 

of the sum-of-the-parts models is not robust to controlling for data snooping biases (with consistent p-

value of 0.1408) in the respective subset. Consequently, the null hypothesis of the SPA-test can also 

not be rejected for the entire set of forecasting strategies (with consistent p-value of 0.2841). 

Taken together, our findings imply that investors who allocate their assets using a traditional 

mean-variance optimization procedure can benefit greatly from forecasting the equity premium using 

the ESOP models rather than the historical average forecast. The ESOP models produce significantly 

higher mean absolute and risk-adjusted excess returns that are robust to data snooping biases. A mar-

ket timing investor might also benefit from the ESOP model forecasts; however, we cannot rule out 

that the superior performance of the ESOP model is merely due to luck. 

5. Robustness 

To assess whether our results are robust to the choice of the out-of-sample period, we split our 

out-of-sample period in two sub-samples of equal lengths (January 1966 to December 1990 and Janu-

ary 1991 to December 2015) and repeat our analyses for the full set of forecasting strategies. The re-

sults in panel A of Table V show that the SOP model is selected as the most significant model in terms 

of MSFE in both sub-samples. However, as indicated by the difference in ‘nominal’ p-values between 

the sub-samples, the superior performance of the SOP model in terms of MSFE is predominantly driv-
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en by its performance in the first half of the out-of-sample period. This finding coincides with the 

results of Ferreira and Santa-Clara (2011), who also report better out-of-sample performance in their 

earlier sub-sample. Accordingly, the null hypothesis of the SPA test is only rejected in the first half of 

the out-of-sample period (with consistent p-value of 0.0219 vs. 0.9950 in the second half). 

[Insert Table V here] 

Panel B of Table V summarizes the results for a mean-variance investor. We note that, regard-

less of the performance measure, one of the sum-of-the-parts models outperforms the historical aver-

age forecast in either sub-sample, supporting our previous results. While in the first half of the out-of-

sample period, an ESOP (Median) model is selected as the most significant and best model in terms of 

mean absolute return (with ‘nominal’ p-value of 0.0139), in the second half it is an ESOP (Mean) 

model that is selected (with ‘nominal p-value of 0.0022). Considering risk-adjusted excess returns, the 

ESOP (Mean) model delivers the most significant and best performance in the first half of the out-of-

sample period (with ‘nominal’ p-value of 0.0009), and the ESOP (Median) model delivers the highest 

risk-adjusted excess return of 0.1940% per month in the second half of the out-of-sample period (with 

‘nominal’ p-value of 0.0233). However, we note that the predictive superiority of the ESOP models 

when applied in the traditional mean-variance asset allocation framework is not robust to the split of 

the out-of-sample period after controlling for data snooping biases; the null hypothesis of the SPA-test 

can only be rejected in the second half of the out-of-sample period when based on mean absolute re-

turns (with consistent p-value of 0.0704) or the first half of the out-of-sample period when based on 

risk-adjusted excess returns (with consistent p-value of 0.0296). 

Finally, panel C of Table V shows the results for the market timer. The results are consistent 

with those above to the extent that the null hypothesis of the SPA-tests cannot be rejected for any sub-

sample or specification of the loss function. Moreover, the ESOP (Mean) model that was selected as 
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the most significant and/or best model in the full out-of-sample period (see the eighth row in panel A 

and B of Table IV), only exhibits predictive superiority over the remaining forecasting strategies in 

the first half of the out-of-sample period. 

Since the null hypothesis of the SPA-test is constructed relative to the performance of a bench-

mark model, our results depend critically on the assumed benchmark model. So far, in line with exist-

ing studies, we have considered the historical average forecast as the appropriate benchmark. Howev-

er, in practice, often a buy-and-hold or a 50:50 constant-mix (rebalancing) strategy may be deemed 

more appropriate when evaluating the economic value of forecasting strategies.
7
 Therefore, we repeat 

our analyses of section 4.2 for the full set of forecasting strategies using these alternative benchmark 

models. Table VI summarizes the results. 

[Insert Table VI here] 

Panel A shows the results for a mean-variance investor. We note that both the buy-and-hold 

strategy and the constant mix strategy yield higher mean absolute returns (0.8747% and 0.6403% per 

month, respectively) and higher risk-adjusted excess returns (0.1055% and 0.1035% per month, re-

spectively) than the historical average forecast. Therefore, we expect that these alternatives serve as 

more stringent benchmark models when testing for statistical significance in a traditional mean-

variance asset allocation. Our results confirm this hypothesis. 

While none of the forecasting strategies is able to outperform the buy-and-hold strategy in terms 

of mean absolute return even in a pairwise comparison, as indicated by a comparatively large ‘nomi-

nal’ p-value, both the ESOP (Median) model and the ESOP (Mean) model deliver significantly higher 

mean absolute returns than the constant mix strategy of 0.9290% per month (with ‘nominal’ p-value 

                                                 
7
 For a 50:50 constant mix strategy, we set 𝑤𝑘,𝑡 = 0.5, i.e., an investor is 50% invested in the S&P 500 index 

and 50% in cash. A constant mix strategy requires monthly rebalancing to the target weights (subject to trans-

action costs of 50 basis points). 
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of 0.0021) and 0.9305% per month (with ‘nominal’ p-value of 0.0020), respectively. The null hypoth-

esis of the SPA-test when applying a loss function based on mean absolute returns cannot be rejected 

when using the buy-and-hold strategy as a benchmark model. However, in line with the results pre-

sented in panel A of Table III above, the null hypothesis of the SPA-test can still be rejected when 

considering a constant mix (rebalancing) strategy as the benchmark model (with consistent p-value of 

0.0306). The step-SPA-test confirms that all three ESOP models significantly outperform the constant 

mix strategy in terms of mean absolute returns. 

The results for risk-adjusted excess returns indicate that the ESOP (Median) model significantly 

outperforms both alternative benchmark models in isolation (with ‘nominal’ p-values of 0.0444 and 

0.0408, respectively). However, in contrast to the results in panel B of Table III, the null hypothesis of 

the SPA-test cannot be rejected when incorporating alternative benchmark models (with consistent p-

values of 0.2883 and 0.2633, respectively). 

Finally, panel B of Table VI summarizes the results for a market timer. As already noted, when 

applied to time the market, the historical average forecast is approximately identical in performance to 

a buy-and-hold strategy. The results of the respective SPA tests are thus nearly indistinguishable; we 

omit a further discussion. When considering the constant-mix strategy as an alternative benchmark, 

however, we observe a significant outperformance of the sum-of-the-part models when considered in 

isolation, both in terms of mean absolute return and risk-adjusted excess return. Contrary to the results 

in panel B of Table IV above, the null hypothesis of the SPA-test for a loss function based on the 

mean absolute return can now be rejected (with consistent p-value of 0.0016).  

6. Conclusions 

In this study, we jointly examine the out-of-sample performance of conventional predictive re-

gressions and a comprehensive set of advanced forecasting strategies. Statistical inference might be 
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biased due to data snooping in comparisons of the out-of-sample performance of different forecasting 

strategies using the same set of data. We address this challenge by applying Hansen’s (2005) SPA-test 

and its stepwise extension by Hsu, Hsu, and Kuan (2010), which allows us to infer whether any of the 

forecasting strategies under investigation exhibits truly superior performance against a given bench-

mark model. 

Our results indicate that, when controlling for data snooping biases, only the sum-of-the parts ap-

proach proposed by Ferreira and Santa-Clara (2011) outperforms the historical average forecast out-

of-sample in terms of mean squared forecast error. We further confirm the results of Leitch and Tan-

ner (1991) by documenting that several forecasting strategies, based on combination forecasts, regime 

shifts, and the sum-of-the-parts approach, significantly outperform the historical average forecast in a 

mean-variance framework when considered in isolation. Extensions of the sum-of-the-parts approach 

proposed by Bätje and Menkhoff (2016) exhibit predictive superiority both on a mean absolute return 

and a risk-adjusted excess return basis even when controlling for data snooping biases. In contrast, 

none of the forecasting strategies under investigation, with exemption of the sum-of-the-parts models 

when assessed against a constant mix benchmark, can help an investor who wishes to engage in mar-

ket timing. Overall, our results provide evidence that mean-variance investors will benefit from using 

more advanced forecasting strategies rather than conventional predictive regressions. 
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Tables 

Table I 

Out-of-sample forecasting results 

This table reports out-of-sample forecasting results for conventional predictive regressions based on fundamental variables 

and advanced forecasting strategies in the out-of-sample period from January 1966 to December 2015. Definitions of funda-

mental variables are shown in appendix A ***, **, and * indicate significance at the 1%, 5% and 10% levels, respectively. 

Forecasting strategies Predictor R²OOS (%) MSFE-adj.  

Panel A: Conventional predictive regressions 

Fundamental variables NTIS -0.54 1.28 * 

 TBL -0.81 1.58 * 

 LTR 0.08 1.73 ** 

 TMS 0.24 2.26 ** 

 DFY -1.22 1.43 * 

Panel B: Advanced forecasting strategies 

Lagged industry returns TV  0.30 1.36 * 

Combination forecasts Mean 0.85 1.57 * 

 Median  0.61 1.70 ** 

 Trimmed mean  0.76 1.54 * 

Forecast restrictions DE 0.01 0.79  

 RVOL 0.30 1.51 * 

 NTIS 0.25 1.81 ** 

 TBL 0.76 2.55 *** 

 LTY 0.30 2.13 ** 

 LTR 0.37 1.72 ** 

 TMS 0.42 2.15 ** 

 DFY 0.13 1.89 ** 

 INFL 0.26 1.21  

State-dependent predictive regressions TBL -1.53 1.33 * 

 TMS -0.56 1.99 ** 

 DFY -2.22 1.31 * 

Sum-of-the-parts models SOP 1.62 3.42 *** 

 ESOP (Mean) 0.04 2.72 *** 

 ESOP (Median) -0.34 2.98 *** 

 ESOP (Trimmed mean) -0.30 2.69 *** 

  



 

34 

Table II 

SPA-tests based on MSFE loss function 

This table reports the results of Hansen’s (2005) SPA-test for conventional predictive regressions based on fundamental 

variables and advanced forecasting strategies compared to the historical average forecast in the out-of-sample period from 

January 1966 to December 2015 for a loss function based on mean squared forecast errors. The table reports the sample loss 

for the benchmark and the two forecasting strategies that have the smallest sample loss value and the largest t-statistic for 

average relative performance (�̅�𝑘). These two strategies are referred to as the “best” and “most significant” model, respec-

tively. The loss value is shown in column (3). Column (4) reports the ‘nominal’ p-values from the pairwise comparisons of 

the best and the most significant model with the benchmark. These p-values (unlike the SPA p-value) ignore the search over 

all strategies that preceded the selection of the strategy being compared to the benchmark, i.e., they do not account for the 

entire set of forecasting strategies. Finally, column (5) shows the consistent p-value of the SPA test, as well as the lower and 

upper bounds for p-values. Results that are significant at the 10% level of significance are printed in bold. 

 (1) (2) (3) (4) (5) 

 Set of forecasting strategies 

Benchmark model 

Most significant model 

Best model 

Loss value p-value 
Consistent p-value 

Lower p-value 

Upper p-value 

(1) 
14 conventional pred. regressions 

33 lagged industry returns 

Historical average 

TV 

TV 

19.4044 

19.3467 

19.3467 

 

0.3594 

0.3594 

0.9988 

0.9449 

0.9988 

(2) 
14 conventional pred. regressions 

14 technical indicators 

Historical average 

TMS 

TMS 

19.4044 

19.3586 

19.3586 

 

0.4268 

0.4268 

0.9963 

0.9544 

0.9963 

(3) 
14 conventional pred. regressions 

3 diffusion indices 

Historical average 

TMS 

TMS 

19.4044 

19.3586 

19.3586 

 

0.4268 

0.4268 

0.9928 

0.9266 

0.9928 

(4) 
14 conventional pred. regressions 

3 combination forecasts 

Historical average 

Median 

Mean 

19.4044 

19.2852 

19.2403 

 

0.0761 

0.1241 

0.5468 

0.3223 

0.5468 

(5) 
14 conventional pred. regressions 

14 forecast restrictions 

Historical average 

TBL (restricted) 

TBL (restricted) 

19.4044 

19.2562 

19.2562 

 

0.0969 

0.0969 

0.7473 

0.5761 

0.7473 

(6) 
14 conventional pred. regressions 

14 state-dependent regressions 

Historical average 

TMS 

TMS 

19.4044 

19.3586 

19.3586 

 

0.4268 

0.4268 

0.9974 

0.9295 

0.9974 

(7) 
14 conventional pred. regressions 

5 sum-of-the-parts models  

Historical average 

SOP 

SOP 

19.4044 

19.0901 

19.0901 

 

0.0058 

0.0058 

0.0556 

0.0291 

0.0556 

(8) 
14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average 

SOP 

SOP 

19.4044 

19.0901 

19.0901 

 

0.0058 

0.0058 

0.1660 

0.0085 

0.1660 
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Table III 

SPA-tests based on profit-based loss function (mean-variance investor) 

This table reports the results of Hansen’s (2005) SPA-test for conventional predictive regressions based on fundamental 

variables and advanced forecasting strategies compared to the historical average forecast in the out-of-sample period from 

January 1966 to December 2015 for a loss function based on the (negative) mean absolute return (panel A) or the risk-

adjusted excess return (panel B) assuming a mean-variance investor. The table reports the sample loss for the benchmark and 

the two forecasting strategies that have the smallest sample loss value and the largest t-statistic for average relative perfor-

mance (�̅�𝒌). These two strategies are referred to as the “best” and “most significant” model, respectively. The loss value is 

shown in column (3). Column (4) reports the ‘nominal’ p-values from the pairwise comparisons of the best and the most 

significant model with the benchmark. These p-values (unlike the SPA p-value) ignore the search over all strategies that 

preceded the selection of the strategy being compared to the benchmark, i.e., they do not account for the entire set of fore-

casting strategies. Finally, column (5) shows the consistent p-value of the SPA-test, as well as the lower and upper bounds 

for p-values. Results that are significant at the 10% level of significance are printed in bold.  

 (1) (2) (3) (4) (5) 

 Set of forecasting strategies 

Benchmark model 

Most significant model 

Best model 

Loss value p-value 
Consistent p-value 

Lower p-value 

Upper p-value 

Panel A: Loss function based on mean absolute return 

(1) 
14 conventional pred. regressions 

33 lagged industry returns 

Historical average 

TMS 

TMS 

-0.5767 

-0.7824 

-0.7824 

 

0.0283 

0.0283 

0.3859 

0.2046 

0.4633 

(2) 
14 conventional pred. regressions 

14 technical indicators 

Historical average 

TMS 

TMS 

-0.5767 

-0.7824 

-0.7824 

 

0.0283 

0.0283 

0.2820 

0.2384 

0.2820 

(3) 
14 conventional pred. regressions 

3 diffusion indices 

Historical average 

TMS 

TMS 

-0.5767 

-0.7824 

-0.7824 

 

0.0283 

0.0283 

0.2586 

0.2139 

0.2586 

(4) 
14 conventional pred. regressions 

3 combination forecasts 

Historical average 

Mean 

TMS 

-0.5767 

-0.7021 

-0.7824 

 

0.0109 

0.0283 

0.1005 

0.0830 

0.1005 

(5) 
14 conventional pred. regressions 

14 forecast restrictions 

Historical average 

TMS 

TMS 

-0.5767 

-0.7824 

-0.7824 

 

0.0283 

0.0283 

0.2422 

0.1965 

0.2422 

(6) 
14 conventional pred. regressions 

14 state-dependent regressions 

Historical average 

TMS 

TMS (state-dependent) 

-0.5767 

-0.7824 

-0.8108 

 

0.0283 

0.0302 

0.3136 

0.2445 

0.3136 

(7) 
14 conventional pred. regressions 

5 sum-of-the-parts models  

Historical average 

ESOP (Median) 

ESOP (Mean) 

-0.5767 

-0.9280 

-0.9305 

 

0.0011 

0.0018 

0.0124 

0.0104 

0.0124 

(8) 
14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average 

ESOP (Median) 

ESOP (Mean) 

-0.5767 

-0.9280 

-0.9305 

 

0.0011 

0.0018 

0.0346 

0.0215 

0.0396 

(continued) 
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Table III– Continued  

Panel B: Loss function based on risk-adjusted excess return 

(1) 
14 conventional pred. regressions 

33 lagged industry returns 

Historical average 

TBL 

TBL 

-0.0503 

-0.1071 

-0.1071 

 

0.0234 

0.0234 

0.3221 

0.1610 

0.4066 

(2) 
14 conventional pred. regressions 

14 technical indicators 

Historical average 

TBL 

TBL 

-0.0503 

-0.1071 

-0.1071 

 

0.0234 

0.0234 

0.2368 

0.1893 

0.2368 

(3) 
14 conventional pred. regressions 

3 diffusion indices 

Historical average 

TBL 

TBL 

-0.0503 

-0.1071 

-0.1071 

 

0.0234 

0.0234 

0.2178 

0.1699 

0.2178 

(4) 
14 conventional pred. regressions 

3 combination forecasts 

Historical average 

Mean 

TBL 

-0.0503 

-0.0993 

-0.1071 

 

0.0019 

0.0234 

0.0195 

0.0158 

0.0195 

(5) 
14 conventional pred. regressions 

14 forecast restrictions 

Historical average 

TBL 

TBL 

-0.0503 

-0.1071 

-0.1071 

 

0.0234 

0.0234 

0.2022 

0.1528 

0.2022 

(6) 
14 conventional pred. regressions 

14 state-dependent regressions 

Historical average 

TBL 

TBL 

-0.0503 

-0.1071 

-0.1071 

 

0.0234 

0.0234 

0.2627 

0.1919 

0.2627 

(7) 
14 conventional pred. regressions 

5 sum-of-the-parts models  

Historical average 

ESOP (Median) 

ESOP (Median) 

-0.0503 

-0.1617 

-0.1617 

 

0.0008 

0.0008 

0.0099 

0.0083 

0.0099 

(8) 
14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average 

ESOP (Median) 

ESOP (Median) 

-0.0503 

-0.1617 

-0.1617 

 

0.0008 

0.0008 

0.0265 

0.0169 

0.0318 
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Table IV 

SPA-tests based on profit-based loss function (market timer) 

This table reports the results of Hansen’s (2005) SPA-test for conventional predictive regressions based on fundamental 

variables and advanced forecasting strategies compared to the historical average forecast in the out-of-sample period from 

January 1966 to December 2015 for a loss function based on the (negative) mean absolute return (panel A) or the risk-

adjusted excess return (panel B) assuming a market timer. The table reports the sample loss for the benchmark and the two 

forecasting strategies that have the smallest sample loss value and the largest t-statistic for average relative performance 

(�̅�𝒌). These two strategies are referred to as the “best” and “most significant” model, respectively. The loss value is shown 

in column (3). Column (4) reports the ‘nominal’ p-values from the pairwise comparisons of the best and the most significant 

model with the benchmark. These p-values (unlike the SPA p-value) ignore the search over all strategies that preceded the 

selection of the strategy being compared to the benchmark, i.e., they do not account for the entire set of forecasting strate-

gies. Finally, column (5) shows the consistent p-value of the SPA-test, as well as the lower and upper bounds for p-values. 

Results that are significant at the 10% level of significance are printed in bold. 

 (1) (2) (3) (4) (5) 

 Set of forecasting strategies 

Benchmark model 

Most significant model 

Best model 

Loss value p-value 
Consistent p-value 

Lower p-value 

Upper p-value 

Panel A: Loss function based on mean absolute return 

(1) 
14 conventional pred. regressions 

33 lagged industry returns 

Historical average 

TMS 

TMS 

-0.8459 

-0.8884 

-0.8884 

 

0.3024 

0.3024 

0.9395 

0.7251 

0.9576 

(2) 
14 conventional pred. regressions 

14 technical indicators 

Historical average 

TMS 

TMS 

-0.8459 

-0.8884 

-0.8884 

 

0.3024 

0.3024 

0.8733 

0.7046 

0.8929 

(3) 
14 conventional pred. regressions 

3 diffusion indices 

Historical average 

TMS 

TMS 

-0.8459 

-0.8884 

-0.8884 

 

0.3024 

0.3024 

0.8598 

0.6917 

0.8824 

(4) 
14 conventional pred. regressions 

3 combination forecasts 

Historical average 

TMS 

TMS 

-0.8459 

-0.8884 

-0.8884 

 

0.3024 

0.3024 

0.8539 

0.6826 

0.8777 

(5) 
14 conventional pred. regressions 

14 forecast restrictions 

Historical average 

TMS 

TMS 

-0.8459 

-0.8884 

-0.8884 

 

0.3024 

0.3024 

0.8432 

0.6585 

0.8688 

(6) 
14 conventional pred. regressions 

14 state-dependent regressions 

Historical average 

TMS 

TMS 

-0.8459 

-0.8884 

-0.8884 

 

0.3024 

0.3024 

0.8822 

0.7030 

0.9081 

(7) 
14 conventional pred. regressions 

5 sum-of-the-parts models  

Historical average 

ESOP (Mean) 

ESOP (Mean) 

-0.8459 

-0.9909 

-0.9909 

 

0.0873 

0.0873 

0.4607 

0.3202 

0.4857 

(8) 
14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average 

ESOP (Mean) 

ESOP (Mean) 

-0.8459 

-0.9909 

-0.9909 

 

0.0873 

0.0873 

0.6539 

0.4011 

0.7033 

(continued) 
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Table IV– Continued 

Panel B: Loss function based on risk-adjusted excess return 

(1) 
14 conventional pred. regressions 

33 lagged industry returns 

Historical average 

TMS 

DE 

-0.1001 

-0.1225 

-0.1232 

 

0.1266 

0.1797 

0.8186 

0.5992 

0.8450 

(2) 
14 conventional pred. regressions 

14 technical indicators 

Historical average 

TMS 

DE 

-0.1001 

-0.1225 

-0.1232 

 

0.1266 

0.1797 

0.6747 

0.5577 

0.7017 

(3) 
14 conventional pred. regressions 

3 diffusion indices 

Historical average 

TMS 

DE 

-0.1001 

-0.1225 

-0.1232 

 

0.1266 

0.1797 

0.6423 

0.5159 

0.6722 

(4) 
14 conventional pred. regressions 

3 combination forecasts 

Historical average 

TMS 

DE 

-0.1001 

-0.1225 

-0.1232 

 

0.1266 

0.1797 

0.6282 

0.4960 

0.6591 

(5) 
14 conventional pred. regressions 

14 forecast restrictions 

Historical average 

TMS 

DE 

-0.1001 

-0.1225 

-0.1232 

 

0.1266 

0.1797 

0.6137 

0.4782 

0.6462 

(6) 
14 conventional pred. regressions 

14 state-dependent regressions 

Historical average 

TMS 

TBL (state-dependent) 

-0.1001 

-0.1225 

-0.1262 

 

0.1266 

0.1824 

0.7171 

0.5396 

0.7370 

(7) 
14 conventional pred. regressions 

5 sum-of-the-parts models  

Historical average 

ESOP (Mean) 

ESOP (Median) 

-0.1001 

-0.1560 

-0.1565 

 

0.0165 

0.0165 

0.1408 

0.1021 

0.1408 

(8) 
14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average 

ESOP (Mean) 

ESOP (Median) 

-0.1001 

-0.1560 

-0.1565 

 

0.0165 

0.0165 

0.2841 

0.1647 

0.3004 
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Table V 

Robustness check: Sub-sample analyses 

This table reports the results of Hansen’s (2005) SPA-test for conventional predictive regressions based on fundamental 

variables and advanced forecasting strategies compared to the historical average forecast in the out-of-sample sub-sample 

periods from January 1966 to December 1990 and from January 1991 to December 2015, respectively, for a loss function 

based on mean squared forecast errors (panel A), the (negative) mean absolute return or the risk-adjusted excess return as-

suming a mean-variance investor (panel B) or a market timer (panel C). The table reports the sample loss for the benchmark 

and the two forecasting strategies that have the smallest sample loss value and the largest t-statistic for average relative per-

formance (�̅�𝑘). These two strategies are referred to as the “best” and “most significant” model, respectively. The loss value 

is shown in column (3). Column (4) reports the ‘nominal’ p-values from the pairwise comparisons of the best and the most 

significant model with the benchmark. These p-values (unlike the SPA p-value) ignore the search over all strategies that 

preceded the selection of the strategy being compared to the benchmark, i.e., they do not account for the entire set of forecast-

ing strategies. Finally, column (5) shows the consistent p-value of the SPA-test, as well as the lower and upper bounds for p-

values. Results that are significant at the 10% level of significance are printed in bold. 

(1) (2) (3) (4) (5) 

Set of forecasting strategies 

Benchmark model 

Most significant model 

Best model 

Loss value p-value 
Consistent p-value 

Lower p-value 

Upper p-value 

Panel A: SPA tests based on MSFE loss function 

1966-1990 

14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average 

SOP 

ESOP (Mean) 

21.2376 

20.7880 

20.4293 

 

0.0009 

0.0031 

0.0219 

0.0164 

0.0219 

1991-2015 

14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average  

SOP 

SOP 

17.5712 

17.3922 

17.3922 

 

0.1840 

0.1840 

0.9950 

0.8123 

0.9964 

Panel B: SPA tests based on profit-based loss function (mean-variance investor) 

I. Loss function based on mean absolute return 

1966-1990 

14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average 

ESOP (Median) 

ESOP (Median) 

-0.6164 

-1.0150 

-1.0150 

 

0.0139 

0.0139 

0.2318 

0.1200 

0.3120 

1991-2015 

14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average  

ESOP (Mean) 

ESOP (Mean) 

-0.5370 

-0.9461 

-0.9461 

 

0.0022 

0.0022 

0.0704 

0.0485 

0.0704 

II. Loss function based on risk-adjusted excess return 

1966-1990 

14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average 

ESOP (Mean) 

ESOP (Mean) 

0.0241 

-0.1687 

-0.1687 

 

0.0009 

0.0009 

0.0296 

0.0196 

0.0296 

1991-2015 

14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average  

EP 

ESOP (Median) 

-0.1019 

-0.1645 

-0.1940 

 

0.0229 

0.0233 

0.3104 

0.1752 

0.4367 
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Table V – Continued 
Panel C: SPA tests based on profit-based loss function (market timer) 

I. Loss function based on mean absolute return 

1966-1990 

14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average 

ESOP (Mean) 

ESOP (Mean) 

-0.8091 

-1.1126 

-1.1126 

 

0.0306 

0.0306 

0.3595 

0.2181 

0.3800 

1991-2015 

14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average  

TMS 

TMS 

-0.8827 

-0.9746 

-0.9746 

 

0.2312 

0.2312 

0.9729 

0.6812 

0.9838 

II. Loss function based on risk-adjusted excess return 

1966-1990 

14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average 

ESOP (Mean) 

ESOP (Mean) 

-0.0471 

-0.1349 

-0.1349 

 

0.0100 

0.0100 

0.2101 

0.1310 

0.2213 

1991-2015 

14 conventional pred. regressions 

All advanced forecasting strategies 

Historical average  

DFY 

DFY 

-0.1576 

-0.2083 

-0.2083 

 

0.0715 

0.0715 

0.6385 

0.3920 

0.6989 
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Table VI 

Robustness check: Alternative benchmark models 

This table reports the results of Hansen’s (2005) SPA-test for conventional predictive regressions based on fundamental 

variables and advanced forecasting strategies compared to a buy-and-hold or 50:50 constant mix strategy in the out-of-sample 

period from January 1966 to December 2015 for a loss function based on the negative absolute return or the risk-adjusted 

excess return assuming a mean-variance investor (panel A) or a market timer (panel B). The table reports the sample loss for 

the benchmark and the two forecasting strategies that have the smallest sample loss value and the largest t-statistic for aver-

age relative performance (�̅�𝑘). These two strategies are referred to as the “best” and “most significant” model, respectively. 

The loss value is shown in column (3). Column (4) reports the ‘nominal’ p-values from the pairwise comparisons of the best 

and the most significant model with the benchmark. These p-values (unlike the SPA p-value) ignore the search over all strat-

egies that preceded the selection of the strategy being compared to the benchmark, i.e., they do not account for the entire set 

of forecasting strategies. Finally, column (5) shows the consistent p-value of the SPA test, as well as the lower and upper 

bounds for p-values. Results that are significant at the 10% level of significance are printed in bold.  

(1) (2) (3) (4) (5) 

Set of forecasting strategies 

Benchmark model 

Most significant model 

Best model 

Loss value p-value 
Consistent p-value 

Lower p-value 

Upper p-value 

Panel A: SPA tests based on profit-based loss function (mean-variance investor) 

I. Loss function based on mean return 

14 conventional pred. regressions 

All advanced forecasting strategies 

Buy-and-hold 

ESOP (Mean) 

ESOP (Mean) 

-0.8747 

-0.9305 

-0.9305 

 

0.3340 

0.3340 

0.7678 

0.4452 

0.8597 

14 conventional pred. regressions 

All advanced forecasting strategies 

Constant mix 

ESOP (Median) 

ESOP (Mean) 

-0.6403 

-0.9280 

-0.9305 

 

0.0021 

0.0020 

0.0306 

0.0196 

0.0316 

II. Loss function based on risk-adjusted excess return 

14 conventional pred. regressions 

All advanced forecasting strategies 

Buy-and-hold 

ESOP (Median) 

ESOP (Median) 

-0.1055 

-0.1617 

-0.1617 

 

0.0444 

0.0444 

0.2883 

0.1624 

0.3881 

14 conventional pred. regressions 

All advanced forecasting strategies 

Constant mix  

ESOP (Median) 

ESOP (Median) 

-0.1035 

-0.1617 

-0.1617 

 

0.0408 

0.0408 

0.2633 

0.1579 

0.3580 

Panel B: SPA tests based on profit-based loss function (market timer) 

I. Loss function based on mean return 

14 conventional pred. regressions 

All advanced forecasting strategies 

Buy-and-hold 

ESOP (Mean) 

ESOP (Mean) 

-0.8747 

-0.9909 

-0.9909 

 

0.1269 

0.1269 

0.7638 

0.4414 

0.8252 

14 conventional pred. regressions 

All advanced forecasting strategies 

Constant mix 

ESOP (Mean) 

ESOP (Mean) 

-0.6403 

-0.9909 

-0.9909 

 

0.0000 

0.0000 

0.0016 

0.0016 

0.0016 

II. Loss function based on risk-adjusted excess return 

14 conventional pred. regressions 

All advanced forecasting strategies 

Buy-and-hold 

ESOP (Mean) 

ESOP (Median) 

-0.1055 

-0.1560 

-0.1565 

 

0.0211 

0.0216 

0.3342 

0.1685 

0.3648 

14 conventional pred. regressions 

All advanced forecasting strategies 

Constant mix 

ESOP (Mean) 

ESOP (Median) 

-0.1035 

-0.1560 

-0.1565 

 

0.0164 

0.0184 

0.2971 

0.1559 

0.3219 
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Appendix A: Definition of fundamental variables 

DP: Dividend-price ratio, calculated as the log of twelve-month moving sum of dividends paid 

on S&P 500 index minus log of stock prices 

DY: Dividend yield, calculated as the log of twelve-month moving sum of dividends paid on 

S&P 500 index minus log of lagged stock prices 

EP: Earnings-price ratio, calculated as the log of twelve-month moving sum of earnings paid on 

S&P 500 index minus log of stock prices 

DE: Dividend-payout ratio, calculated as the log of twelve-month moving sum of dividends paid 

on S&P 500 index minus log of twelve-month moving sum of earnings 

RVOL: Equity premium volatility based on twelve-month moving standard deviation estimator fol-

lowing Mele (2007) 

BM: Book-to-market value ratio for the Dow Jones Industrial Average 

NTIS: Net equity expansion, calculated as the ratio of a twelve-month moving sum of net equity 

issues by NYSE-listed stocks to the total end-of-year market capitalization of New York 

Stock Exchange (NYSE) stocks 

TBL: Interest rate on a three-month Treasury bill 

LTY: Long-term government bond yield 

LTR: Return on long-term government bonds 

TMS: Term spread, calculated as the long-term yield minus the Treasury bill rate 

DFY: Default yield spread, calculated as the difference between Moody’s BAA- and AAA-rated 

corporate bond yields 

DFR:  Default return spread, calculated as the long-term corporate bond return minus the long-term 

government bond return 

INFL: Inflation, calculated from CPI for all urban consumers, lagged by one month to account for 

the delay in CPI releases 

 


